mirror of
				https://git.zaroz.cloud/nintendo-back-up/yuzu/yuzu.git
				synced 2025-05-12 00:45:25 +00:00 
			
		
		
		
	Merge pull request #562 from neobrain/pica_progress3
More PICA200 Emulation Fixes
This commit is contained in:
		
						commit
						4a48b017ca
					
				| @ -372,15 +372,15 @@ static void ExecuteCommand(const Command& command, u32 thread_id) { | ||||
|                          Memory::VirtualToPhysicalAddress(params.start1) >> 3); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].address_end)), | ||||
|                          Memory::VirtualToPhysicalAddress(params.end1) >> 3); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].size)), params.end1 - params.start1); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].value)), params.value1); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].value_32bit)), params.value1); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[0].control)), params.control1); | ||||
| 
 | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_start)), | ||||
|                          Memory::VirtualToPhysicalAddress(params.start2) >> 3); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].address_end)), | ||||
|                          Memory::VirtualToPhysicalAddress(params.end2) >> 3); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].size)), params.end2 - params.start2); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].value)), params.value2); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].value_32bit)), params.value2); | ||||
|         WriteGPURegister(static_cast<u32>(GPU_REG_INDEX(memory_fill_config[1].control)), params.control2); | ||||
|         break; | ||||
|     } | ||||
| 
 | ||||
|  | ||||
| @ -109,9 +109,13 @@ struct Command { | ||||
|             u32 start1; | ||||
|             u32 value1; | ||||
|             u32 end1; | ||||
| 
 | ||||
|             u32 start2; | ||||
|             u32 value2; | ||||
|             u32 end2; | ||||
| 
 | ||||
|             u16 control1; | ||||
|             u16 control2; | ||||
|         } memory_fill; | ||||
| 
 | ||||
|         struct { | ||||
|  | ||||
| @ -67,23 +67,38 @@ inline void Write(u32 addr, const T data) { | ||||
|     switch (index) { | ||||
| 
 | ||||
|     // Memory fills are triggered once the fill value is written.
 | ||||
|     // NOTE: This is not verified.
 | ||||
|     case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].value, 0x00004 + 0x3): | ||||
|     case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].value, 0x00008 + 0x3): | ||||
|     case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].trigger, 0x00004 + 0x3): | ||||
|     case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].trigger, 0x00008 + 0x3): | ||||
|     { | ||||
|         const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].value)); | ||||
|         const auto& config = g_regs.memory_fill_config[is_second_filler]; | ||||
|         const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].trigger)); | ||||
|         auto& config = g_regs.memory_fill_config[is_second_filler]; | ||||
| 
 | ||||
|         // TODO: Not sure if this check should be done at GSP level instead
 | ||||
|         if (config.address_start) { | ||||
|             // TODO: Not sure if this algorithm is correct, particularly because it doesn't use the size member at all
 | ||||
|             u32* start = (u32*)Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetStartAddress())); | ||||
|             u32* end = (u32*)Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetEndAddress())); | ||||
|             for (u32* ptr = start; ptr < end; ++ptr) | ||||
|                 *ptr = bswap32(config.value); // TODO: This is just a workaround to missing framebuffer format emulation
 | ||||
|         if (config.address_start && config.trigger) { | ||||
|             u8* start = Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetStartAddress())); | ||||
|             u8* end = Memory::GetPointer(Memory::PhysicalToVirtualAddress(config.GetEndAddress())); | ||||
| 
 | ||||
|             if (config.fill_24bit) { | ||||
|                 // fill with 24-bit values
 | ||||
|                 for (u8* ptr = start; ptr < end; ptr += 3) { | ||||
|                     ptr[0] = config.value_24bit_b; | ||||
|                     ptr[1] = config.value_24bit_g; | ||||
|                     ptr[2] = config.value_24bit_r; | ||||
|                 } | ||||
|             } else if (config.fill_32bit) { | ||||
|                 // fill with 32-bit values
 | ||||
|                 for (u32* ptr = (u32*)start; ptr < (u32*)end; ++ptr) | ||||
|                     *ptr = config.value_32bit; | ||||
|             } else { | ||||
|                 // fill with 16-bit values
 | ||||
|                 for (u16* ptr = (u16*)start; ptr < (u16*)end; ++ptr) | ||||
|                     *ptr = config.value_16bit; | ||||
|             } | ||||
| 
 | ||||
|             LOG_TRACE(HW_GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(), config.GetEndAddress()); | ||||
| 
 | ||||
|             config.trigger = 0; | ||||
|             config.finished = 1; | ||||
| 
 | ||||
|             if (!is_second_filler) { | ||||
|                 GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::PSC0); | ||||
|             } else { | ||||
|  | ||||
| @ -84,9 +84,35 @@ struct Regs { | ||||
| 
 | ||||
|     struct { | ||||
|         u32 address_start; | ||||
|         u32 address_end; // ?
 | ||||
|         u32 size; | ||||
|         u32 value; // ?
 | ||||
|         u32 address_end; | ||||
| 
 | ||||
|         union { | ||||
|             u32 value_32bit; | ||||
| 
 | ||||
|             BitField<0, 16, u32> value_16bit; | ||||
| 
 | ||||
|             // TODO: Verify component order
 | ||||
|             BitField< 0, 8, u32> value_24bit_r; | ||||
|             BitField< 8, 8, u32> value_24bit_g; | ||||
|             BitField<16, 8, u32> value_24bit_b; | ||||
|         }; | ||||
| 
 | ||||
|         union { | ||||
|             u32 control; | ||||
| 
 | ||||
|             // Setting this field to 1 triggers the memory fill.
 | ||||
|             // This field also acts as a status flag, and gets reset to 0 upon completion.
 | ||||
|             BitField<0, 1, u32> trigger; | ||||
| 
 | ||||
|             // Set to 1 upon completion.
 | ||||
|             BitField<0, 1, u32> finished; | ||||
| 
 | ||||
|             // 0: fill with 16- or 32-bit wide values; 1: fill with 24-bit wide values
 | ||||
|             BitField<8, 1, u32> fill_24bit; | ||||
| 
 | ||||
|             // 0: fill with 16-bit wide values; 1: fill with 32-bit wide values
 | ||||
|             BitField<9, 1, u32> fill_32bit; | ||||
|         }; | ||||
| 
 | ||||
|         inline u32 GetStartAddress() const { | ||||
|             return DecodeAddressRegister(address_start); | ||||
|  | ||||
| @ -15,30 +15,18 @@ namespace Clipper { | ||||
| 
 | ||||
| struct ClippingEdge { | ||||
| public: | ||||
|     enum Type { | ||||
|         POS_X = 0, | ||||
|         NEG_X = 1, | ||||
|         POS_Y = 2, | ||||
|         NEG_Y = 3, | ||||
|         POS_Z = 4, | ||||
|         NEG_Z = 5, | ||||
|     }; | ||||
| 
 | ||||
|     ClippingEdge(Type type, float24 position) : type(type), pos(position) {} | ||||
|     ClippingEdge(Math::Vec4<float24> coeffs, | ||||
|                  Math::Vec4<float24> bias = Math::Vec4<float24>(float24::FromFloat32(0), | ||||
|                                                                 float24::FromFloat32(0), | ||||
|                                                                 float24::FromFloat32(0), | ||||
|                                                                 float24::FromFloat32(0))) | ||||
|         : coeffs(coeffs), | ||||
|           bias(bias) | ||||
|     { | ||||
|     } | ||||
| 
 | ||||
|     bool IsInside(const OutputVertex& vertex) const { | ||||
|         switch (type) { | ||||
|         case POS_X: return vertex.pos.x <= pos * vertex.pos.w; | ||||
|         case NEG_X: return vertex.pos.x >= pos * vertex.pos.w; | ||||
|         case POS_Y: return vertex.pos.y <= pos * vertex.pos.w; | ||||
|         case NEG_Y: return vertex.pos.y >= pos * vertex.pos.w; | ||||
| 
 | ||||
|         // TODO: Check z compares ... should be 0..1 instead?
 | ||||
|         case POS_Z: return vertex.pos.z <= pos * vertex.pos.w; | ||||
| 
 | ||||
|         default: | ||||
|         case NEG_Z: return vertex.pos.z >= pos * vertex.pos.w; | ||||
|         } | ||||
|         return Math::Dot(vertex.pos + bias, coeffs) <= float24::FromFloat32(0); | ||||
|     } | ||||
| 
 | ||||
|     bool IsOutSide(const OutputVertex& vertex) const { | ||||
| @ -46,31 +34,17 @@ public: | ||||
|     } | ||||
| 
 | ||||
|     OutputVertex GetIntersection(const OutputVertex& v0, const OutputVertex& v1) const { | ||||
|         auto dotpr = [this](const OutputVertex& vtx) { | ||||
|             switch (type) { | ||||
|             case POS_X: return vtx.pos.x - vtx.pos.w; | ||||
|             case NEG_X: return -vtx.pos.x - vtx.pos.w; | ||||
|             case POS_Y: return vtx.pos.y - vtx.pos.w; | ||||
|             case NEG_Y: return -vtx.pos.y - vtx.pos.w; | ||||
| 
 | ||||
|             // TODO: Verify z clipping
 | ||||
|             case POS_Z: return vtx.pos.z - vtx.pos.w; | ||||
| 
 | ||||
|             default: | ||||
|             case NEG_Z: return -vtx.pos.w; | ||||
|             } | ||||
|         }; | ||||
| 
 | ||||
|         float24 dp = dotpr(v0); | ||||
|         float24 dp_prev = dotpr(v1); | ||||
|         float24 dp = Math::Dot(v0.pos + bias, coeffs); | ||||
|         float24 dp_prev = Math::Dot(v1.pos + bias, coeffs); | ||||
|         float24 factor = dp_prev / (dp_prev - dp); | ||||
| 
 | ||||
|         return OutputVertex::Lerp(factor, v0, v1); | ||||
|     } | ||||
| 
 | ||||
| private: | ||||
|     Type type; | ||||
|     float24 pos; | ||||
|     Math::Vec4<float24> coeffs; | ||||
|     Math::Vec4<float24> bias; | ||||
| }; | ||||
| 
 | ||||
| static void InitScreenCoordinates(OutputVertex& vtx) | ||||
| @ -98,10 +72,9 @@ static void InitScreenCoordinates(OutputVertex& vtx) | ||||
|     vtx.tc2 *= inv_w; | ||||
|     vtx.pos.w = inv_w; | ||||
| 
 | ||||
|     // TODO: Not sure why the viewport width needs to be divided by 2 but the viewport height does not
 | ||||
|     vtx.screenpos[0] = (vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x; | ||||
|     vtx.screenpos[1] = (vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y; | ||||
|     vtx.screenpos[2] = viewport.offset_z - vtx.pos.z * inv_w * viewport.zscale; | ||||
|     vtx.screenpos[2] = viewport.offset_z + vtx.pos.z * inv_w * viewport.zscale; | ||||
| } | ||||
| 
 | ||||
| void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { | ||||
| @ -117,14 +90,29 @@ void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { | ||||
|     auto* output_list = &buffer_a; | ||||
|     auto* input_list  = &buffer_b; | ||||
| 
 | ||||
|     // NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value.
 | ||||
|     // TODO: Not sure if this is a valid approach. Also should probably instead use the smallest
 | ||||
|     //       epsilon possible within float24 accuracy.
 | ||||
|     static const float24 EPSILON = float24::FromFloat32(0.00001); | ||||
|     static const float24 f0 = float24::FromFloat32(0.0); | ||||
|     static const float24 f1 = float24::FromFloat32(1.0); | ||||
|     static const std::array<ClippingEdge, 7> clipping_edges = {{ | ||||
|         { Math::MakeVec( f1,  f0,  f0, -f1) },  // x = +w
 | ||||
|         { Math::MakeVec(-f1,  f0,  f0, -f1) },  // x = -w
 | ||||
|         { Math::MakeVec( f0,  f1,  f0, -f1) },  // y = +w
 | ||||
|         { Math::MakeVec( f0, -f1,  f0, -f1) },  // y = -w
 | ||||
|         { Math::MakeVec( f0,  f0,  f1,  f0) },  // z =  0
 | ||||
|         { Math::MakeVec( f0,  f0, -f1, -f1) },  // z = -w
 | ||||
|         { Math::MakeVec( f0,  f0,  f0, -f1), Math::Vec4<float24>(f0, f0, f0, EPSILON) }, // w = EPSILON
 | ||||
|     }}; | ||||
| 
 | ||||
|     // TODO: If one vertex lies outside one of the depth clipping planes, some platforms (e.g. Wii)
 | ||||
|     //       drop the whole primitive instead of clipping the primitive properly. We should test if
 | ||||
|     //       this happens on the 3DS, too.
 | ||||
| 
 | ||||
|     // Simple implementation of the Sutherland-Hodgman clipping algorithm.
 | ||||
|     // TODO: Make this less inefficient (currently lots of useless buffering overhead happens here)
 | ||||
|     for (auto edge : { ClippingEdge(ClippingEdge::POS_X, float24::FromFloat32(+1.0)), | ||||
|                        ClippingEdge(ClippingEdge::NEG_X, float24::FromFloat32(-1.0)), | ||||
|                        ClippingEdge(ClippingEdge::POS_Y, float24::FromFloat32(+1.0)), | ||||
|                        ClippingEdge(ClippingEdge::NEG_Y, float24::FromFloat32(-1.0)), | ||||
|                        ClippingEdge(ClippingEdge::POS_Z, float24::FromFloat32(+1.0)), | ||||
|                        ClippingEdge(ClippingEdge::NEG_Z, float24::FromFloat32(-1.0)) }) { | ||||
|     for (auto edge : clipping_edges) { | ||||
| 
 | ||||
|         std::swap(input_list, output_list); | ||||
|         output_list->clear(); | ||||
|  | ||||
| @ -2,6 +2,8 @@ | ||||
| // Licensed under GPLv2 or any later version
 | ||||
| // Refer to the license.txt file included.
 | ||||
| 
 | ||||
| #include <boost/range/algorithm/fill.hpp> | ||||
| 
 | ||||
| #include "clipper.h" | ||||
| #include "command_processor.h" | ||||
| #include "math.h" | ||||
| @ -23,10 +25,6 @@ static int float_regs_counter = 0; | ||||
| 
 | ||||
| static u32 uniform_write_buffer[4]; | ||||
| 
 | ||||
| // Used for VSLoadProgramData and VSLoadSwizzleData
 | ||||
| static u32 vs_binary_write_offset = 0; | ||||
| static u32 vs_swizzle_write_offset = 0; | ||||
| 
 | ||||
| static inline void WritePicaReg(u32 id, u32 value, u32 mask) { | ||||
| 
 | ||||
|     if (id >= registers.NumIds()) | ||||
| @ -65,10 +63,14 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { | ||||
| 
 | ||||
|             // Information about internal vertex attributes
 | ||||
|             u32 vertex_attribute_sources[16]; | ||||
|             std::fill(vertex_attribute_sources, &vertex_attribute_sources[16], 0xdeadbeef); | ||||
|             boost::fill(vertex_attribute_sources, 0xdeadbeef); | ||||
|             u32 vertex_attribute_strides[16]; | ||||
|             u32 vertex_attribute_formats[16]; | ||||
|             u32 vertex_attribute_elements[16]; | ||||
| 
 | ||||
|             // HACK: Initialize vertex_attribute_elements to zero to prevent infinite loops below.
 | ||||
|             // This is one of the hacks required to deal with uninitalized vertex attributes.
 | ||||
|             // TODO: Fix this properly.
 | ||||
|             u32 vertex_attribute_elements[16] = {}; | ||||
|             u32 vertex_attribute_element_size[16]; | ||||
| 
 | ||||
|             // Setup attribute data from loaders
 | ||||
| @ -252,11 +254,6 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { | ||||
|             break; | ||||
|         } | ||||
| 
 | ||||
|         // Seems to be used to reset the write pointer for VSLoadProgramData
 | ||||
|         case PICA_REG_INDEX(vs_program.begin_load): | ||||
|             vs_binary_write_offset = 0; | ||||
|             break; | ||||
| 
 | ||||
|         // Load shader program code
 | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[0], 0x2cc): | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[1], 0x2cd): | ||||
| @ -267,16 +264,11 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[6], 0x2d2): | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[7], 0x2d3): | ||||
|         { | ||||
|             VertexShader::SubmitShaderMemoryChange(vs_binary_write_offset, value); | ||||
|             vs_binary_write_offset++; | ||||
|             VertexShader::SubmitShaderMemoryChange(registers.vs_program.offset, value); | ||||
|             registers.vs_program.offset++; | ||||
|             break; | ||||
|         } | ||||
| 
 | ||||
|         // Seems to be used to reset the write pointer for VSLoadSwizzleData
 | ||||
|         case PICA_REG_INDEX(vs_swizzle_patterns.begin_load): | ||||
|             vs_swizzle_write_offset = 0; | ||||
|             break; | ||||
| 
 | ||||
|         // Load swizzle pattern data
 | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[0], 0x2d6): | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[1], 0x2d7): | ||||
| @ -287,8 +279,8 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[6], 0x2dc): | ||||
|         case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[7], 0x2dd): | ||||
|         { | ||||
|             VertexShader::SubmitSwizzleDataChange(vs_swizzle_write_offset, value); | ||||
|             vs_swizzle_write_offset++; | ||||
|             VertexShader::SubmitSwizzleDataChange(registers.vs_swizzle_patterns.offset, value); | ||||
|             registers.vs_swizzle_patterns.offset++; | ||||
|             break; | ||||
|         } | ||||
| 
 | ||||
|  | ||||
| @ -120,6 +120,7 @@ struct Regs { | ||||
|         enum WrapMode : u32 { | ||||
|             ClampToEdge    = 0, | ||||
|             Repeat         = 2, | ||||
|             MirroredRepeat = 3, | ||||
|         }; | ||||
| 
 | ||||
|         INSERT_PADDING_WORDS(0x1); | ||||
| @ -131,7 +132,7 @@ struct Regs { | ||||
| 
 | ||||
|         union { | ||||
|             BitField< 8, 2, WrapMode> wrap_s; | ||||
|             BitField<11, 2, WrapMode> wrap_t; | ||||
|             BitField<12, 2, WrapMode> wrap_t; | ||||
|         }; | ||||
| 
 | ||||
|         INSERT_PADDING_WORDS(0x1); | ||||
| @ -223,6 +224,8 @@ struct Regs { | ||||
|     struct TevStageConfig { | ||||
|         enum class Source : u32 { | ||||
|             PrimaryColor           = 0x0, | ||||
|             PrimaryFragmentColor   = 0x1, | ||||
| 
 | ||||
|             Texture0               = 0x3, | ||||
|             Texture1               = 0x4, | ||||
|             Texture2               = 0x5, | ||||
| @ -265,6 +268,9 @@ struct Regs { | ||||
|             AddSigned       = 3, | ||||
|             Lerp            = 4, | ||||
|             Subtract        = 5, | ||||
| 
 | ||||
|             MultiplyThenAdd = 8, | ||||
|             AddThenMultiply = 9, | ||||
|         }; | ||||
| 
 | ||||
|         union { | ||||
| @ -337,7 +343,7 @@ struct Regs { | ||||
|         }; | ||||
| 
 | ||||
|         union { | ||||
|             enum BlendEquation : u32 { | ||||
|             enum class BlendEquation : u32 { | ||||
|                 Add             = 0, | ||||
|                 Subtract        = 1, | ||||
|                 ReverseSubtract = 2, | ||||
| @ -421,7 +427,7 @@ struct Regs { | ||||
|         INSERT_PADDING_WORDS(0x6); | ||||
| 
 | ||||
|         u32 depth_format; | ||||
|         u32 color_format; | ||||
|         BitField<16, 3, u32> color_format; | ||||
| 
 | ||||
|         INSERT_PADDING_WORDS(0x4); | ||||
| 
 | ||||
| @ -678,7 +684,9 @@ struct Regs { | ||||
|     INSERT_PADDING_WORDS(0x2); | ||||
| 
 | ||||
|     struct { | ||||
|         u32 begin_load; | ||||
|         // Offset of the next instruction to write code to.
 | ||||
|         // Incremented with each instruction write.
 | ||||
|         u32 offset; | ||||
| 
 | ||||
|         // Writing to these registers sets the "current" word in the shader program.
 | ||||
|         // TODO: It's not clear how the hardware stores what the "current" word is.
 | ||||
| @ -690,7 +698,9 @@ struct Regs { | ||||
|     // This register group is used to load an internal table of swizzling patterns,
 | ||||
|     // which are indexed by each shader instruction to specify vector component swizzling.
 | ||||
|     struct { | ||||
|         u32 begin_load; | ||||
|         // Offset of the next swizzle pattern to write code to.
 | ||||
|         // Incremented with each instruction write.
 | ||||
|         u32 offset; | ||||
| 
 | ||||
|         // Writing to these registers sets the "current" swizzle pattern in the table.
 | ||||
|         // TODO: It's not clear how the hardware stores what the "current" swizzle pattern is.
 | ||||
|  | ||||
| @ -5,6 +5,7 @@ | ||||
| #include <algorithm> | ||||
| 
 | ||||
| #include "common/common_types.h" | ||||
| #include "common/math_util.h" | ||||
| 
 | ||||
| #include "math.h" | ||||
| #include "pica.h" | ||||
| @ -20,16 +21,31 @@ namespace Rasterizer { | ||||
| static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { | ||||
|     const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); | ||||
|     u32* color_buffer = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr))); | ||||
|     u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); | ||||
| 
 | ||||
|     // Assuming RGBA8 format until actual framebuffer format handling is implemented
 | ||||
|     // Similarly to textures, the render framebuffer is laid out from bottom to top, too.
 | ||||
|     // NOTE: The framebuffer height register contains the actual FB height minus one.
 | ||||
|     y = (registers.framebuffer.height - y); | ||||
| 
 | ||||
|     switch (registers.framebuffer.color_format) { | ||||
|     case registers.framebuffer.RGBA8: | ||||
|     { | ||||
|         u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); | ||||
|         *(color_buffer + x + y * registers.framebuffer.GetWidth()) = value; | ||||
|         break; | ||||
|     } | ||||
| 
 | ||||
|     default: | ||||
|         LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format); | ||||
|         UNIMPLEMENTED(); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| static const Math::Vec4<u8> GetPixel(int x, int y) { | ||||
|     const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); | ||||
|     u32* color_buffer_u32 = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr))); | ||||
| 
 | ||||
|     y = (registers.framebuffer.height - y); | ||||
| 
 | ||||
|     u32 value = *(color_buffer_u32 + x + y * registers.framebuffer.GetWidth()); | ||||
|     Math::Vec4<u8> ret; | ||||
|     ret.a() = value >> 24; | ||||
| @ -43,6 +59,8 @@ static u32 GetDepth(int x, int y) { | ||||
|     const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|     u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr))); | ||||
| 
 | ||||
|     y = (registers.framebuffer.height - y); | ||||
| 
 | ||||
|     // Assuming 16-bit depth buffer format until actual format handling is implemented
 | ||||
|     return *(depth_buffer + x + y * registers.framebuffer.GetWidth()); | ||||
| } | ||||
| @ -51,6 +69,8 @@ static void SetDepth(int x, int y, u16 value) { | ||||
|     const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); | ||||
|     u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr))); | ||||
| 
 | ||||
|     y = (registers.framebuffer.height - y); | ||||
| 
 | ||||
|     // Assuming 16-bit depth buffer format until actual format handling is implemented
 | ||||
|     *(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value; | ||||
| } | ||||
| @ -90,15 +110,22 @@ static int SignedArea (const Math::Vec2<Fix12P4>& vtx1, | ||||
|     return Math::Cross(vec1, vec2).z; | ||||
| }; | ||||
| 
 | ||||
| void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
| /**
 | ||||
|  * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing | ||||
|  * culling via recursion. | ||||
|  */ | ||||
| static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0, | ||||
|                                     const VertexShader::OutputVertex& v1, | ||||
|                      const VertexShader::OutputVertex& v2) | ||||
|                                     const VertexShader::OutputVertex& v2, | ||||
|                                     bool reversed = false) | ||||
| { | ||||
|     // vertex positions in rasterizer coordinates
 | ||||
|     auto FloatToFix = [](float24 flt) { | ||||
|                           return Fix12P4(static_cast<unsigned short>(flt.ToFloat32() * 16.0f)); | ||||
|     static auto FloatToFix = [](float24 flt) { | ||||
|         // TODO: Rounding here is necessary to prevent garbage pixels at
 | ||||
|         //       triangle borders. Is it that the correct solution, though?
 | ||||
|         return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f))); | ||||
|     }; | ||||
|     auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) { | ||||
|     static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) { | ||||
|         return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; | ||||
|     }; | ||||
| 
 | ||||
| @ -106,14 +133,20 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|                                    ScreenToRasterizerCoordinates(v1.screenpos), | ||||
|                                    ScreenToRasterizerCoordinates(v2.screenpos) }; | ||||
| 
 | ||||
|     if (registers.cull_mode == Regs::CullMode::KeepClockWise) { | ||||
|     if (registers.cull_mode == Regs::CullMode::KeepAll) { | ||||
|         // Make sure we always end up with a triangle wound counter-clockwise
 | ||||
|         if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { | ||||
|             ProcessTriangleInternal(v0, v2, v1, true); | ||||
|             return; | ||||
|         } | ||||
|     } else { | ||||
|         if (!reversed && registers.cull_mode == Regs::CullMode::KeepClockWise) { | ||||
|             // Reverse vertex order and use the CCW code path.
 | ||||
|         std::swap(vtxpos[1], vtxpos[2]); | ||||
|             ProcessTriangleInternal(v0, v2, v1, true); | ||||
|             return; | ||||
|         } | ||||
| 
 | ||||
|     if (registers.cull_mode != Regs::CullMode::KeepAll) { | ||||
|         // Cull away triangles which are wound clockwise.
 | ||||
|         // TODO: A check for degenerate triangles ("== 0") should be considered for CullMode::KeepAll
 | ||||
|         if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) | ||||
|             return; | ||||
|     } | ||||
| @ -155,9 +188,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|     auto textures = registers.GetTextures(); | ||||
|     auto tev_stages = registers.GetTevStages(); | ||||
| 
 | ||||
|     // Enter rasterization loop, starting at the center of the topleft bounding box corner.
 | ||||
|     // TODO: Not sure if looping through x first might be faster
 | ||||
|     for (u16 y = min_y; y < max_y; y += 0x10) { | ||||
|         for (u16 x = min_x; x < max_x; x += 0x10) { | ||||
|     for (u16 y = min_y + 8; y < max_y; y += 0x10) { | ||||
|         for (u16 x = min_x + 8; x < max_x; x += 0x10) { | ||||
| 
 | ||||
|             // Calculate the barycentric coordinates w0, w1 and w2
 | ||||
|             int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); | ||||
| @ -220,7 +254,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
| 
 | ||||
|                 int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32(); | ||||
|                 int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32(); | ||||
|                 auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) { | ||||
|                 static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) { | ||||
|                     switch (mode) { | ||||
|                         case Regs::TextureConfig::ClampToEdge: | ||||
|                             val = std::max(val, 0); | ||||
| @ -228,7 +262,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|                             return val; | ||||
| 
 | ||||
|                         case Regs::TextureConfig::Repeat: | ||||
|                             return (int)(((unsigned)val) % size); | ||||
|                             return (int)((unsigned)val % size); | ||||
| 
 | ||||
|                         case Regs::TextureConfig::MirroredRepeat: | ||||
|                         { | ||||
|                             int val = (int)((unsigned)val % (2 * size)); | ||||
|                             if (val >= size) | ||||
|                                 val = 2 * size - 1 - val; | ||||
|                             return val; | ||||
|                         } | ||||
| 
 | ||||
|                         default: | ||||
|                             LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x\n", (int)mode); | ||||
| @ -236,6 +278,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|                             return 0; | ||||
|                     } | ||||
|                 }; | ||||
| 
 | ||||
|                 // Textures are laid out from bottom to top, hence we invert the t coordinate.
 | ||||
|                 // NOTE: This may not be the right place for the inversion.
 | ||||
|                 // TODO: Check if this applies to ETC textures, too.
 | ||||
|                 s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width); | ||||
|                 t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); | ||||
| 
 | ||||
| @ -262,7 +308,9 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
| 
 | ||||
|                 auto GetSource = [&](Source source) -> Math::Vec4<u8> { | ||||
|                     switch (source) { | ||||
|                     // TODO: What's the difference between these two?
 | ||||
|                     case Source::PrimaryColor: | ||||
|                     case Source::PrimaryFragmentColor: | ||||
|                         return primary_color; | ||||
| 
 | ||||
|                     case Source::Texture0: | ||||
| @ -378,6 +426,25 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|                         return result.Cast<u8>(); | ||||
|                     } | ||||
| 
 | ||||
|                     case Operation::MultiplyThenAdd: | ||||
|                     { | ||||
|                         auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255; | ||||
|                         result.r() = std::min(255, result.r()); | ||||
|                         result.g() = std::min(255, result.g()); | ||||
|                         result.b() = std::min(255, result.b()); | ||||
|                         return result.Cast<u8>(); | ||||
|                     } | ||||
| 
 | ||||
|                     case Operation::AddThenMultiply: | ||||
|                     { | ||||
|                         auto result = input[0] + input[1]; | ||||
|                         result.r() = std::min(255, result.r()); | ||||
|                         result.g() = std::min(255, result.g()); | ||||
|                         result.b() = std::min(255, result.b()); | ||||
|                         result = (result * input[2].Cast<int>()) / 255; | ||||
|                         return result.Cast<u8>(); | ||||
|                     } | ||||
| 
 | ||||
|                     default: | ||||
|                         LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op); | ||||
|                         UNIMPLEMENTED(); | ||||
| @ -402,6 +469,12 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|                     case Operation::Subtract: | ||||
|                         return std::max(0, (int)input[0] - (int)input[1]); | ||||
| 
 | ||||
|                     case Operation::MultiplyThenAdd: | ||||
|                         return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255); | ||||
| 
 | ||||
|                     case Operation::AddThenMultiply: | ||||
|                         return (std::min(255, (input[0] + input[1])) * input[2]) / 255; | ||||
| 
 | ||||
|                     default: | ||||
|                         LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op); | ||||
|                         UNIMPLEMENTED(); | ||||
| @ -475,7 +548,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
| 
 | ||||
|             // TODO: Does depth indeed only get written even if depth testing is enabled?
 | ||||
|             if (registers.output_merger.depth_test_enable) { | ||||
|                 u16 z = (u16)(-(v0.screenpos[2].ToFloat32() * w0 + | ||||
|                 u16 z = (u16)((v0.screenpos[2].ToFloat32() * w0 + | ||||
|                             v1.screenpos[2].ToFloat32() * w1 + | ||||
|                             v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); | ||||
|                 u16 ref_z = GetDepth(x >> 4, y >> 4); | ||||
| @ -524,6 +597,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|             } | ||||
| 
 | ||||
|             auto dest = GetPixel(x >> 4, y >> 4); | ||||
|             Math::Vec4<u8> blend_output = combiner_output; | ||||
| 
 | ||||
|             if (registers.output_merger.alphablend_enable) { | ||||
|                 auto params = registers.output_merger.alpha_blending; | ||||
| @ -574,7 +648,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
| 
 | ||||
|                     default: | ||||
|                         LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor); | ||||
|                         exit(0); | ||||
|                         UNIMPLEMENTED(); | ||||
|                         break; | ||||
|                     } | ||||
|                 }; | ||||
| @ -607,86 +681,78 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
| 
 | ||||
|                     default: | ||||
|                         LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor); | ||||
|                         exit(0); | ||||
|                         UNIMPLEMENTED(); | ||||
|                         break; | ||||
|                     } | ||||
|                 }; | ||||
| 
 | ||||
|                 using BlendEquation = decltype(params)::BlendEquation; | ||||
|                 static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor, | ||||
|                                                        const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor, | ||||
|                                                        BlendEquation equation) { | ||||
|                     Math::Vec4<int> result; | ||||
| 
 | ||||
|                     auto src_result = (src  *  srcfactor).Cast<int>(); | ||||
|                     auto dst_result = (dest * destfactor).Cast<int>(); | ||||
| 
 | ||||
|                     switch (equation) { | ||||
|                     case BlendEquation::Add: | ||||
|                         result = (src_result + dst_result) / 255; | ||||
|                         break; | ||||
| 
 | ||||
|                     case BlendEquation::Subtract: | ||||
|                         result = (src_result - dst_result) / 255; | ||||
|                         break; | ||||
| 
 | ||||
|                     case BlendEquation::ReverseSubtract: | ||||
|                         result = (dst_result - src_result) / 255; | ||||
|                         break; | ||||
| 
 | ||||
|                     // TODO: How do these two actually work?
 | ||||
|                     //       OpenGL doesn't include the blend factors in the min/max computations,
 | ||||
|                     //       but is this what the 3DS actually does?
 | ||||
|                     case BlendEquation::Min: | ||||
|                         result.r() = std::min(src.r(), dest.r()); | ||||
|                         result.g() = std::min(src.g(), dest.g()); | ||||
|                         result.b() = std::min(src.b(), dest.b()); | ||||
|                         result.a() = std::min(src.a(), dest.a()); | ||||
|                         break; | ||||
| 
 | ||||
|                     case BlendEquation::Max: | ||||
|                         result.r() = std::max(src.r(), dest.r()); | ||||
|                         result.g() = std::max(src.g(), dest.g()); | ||||
|                         result.b() = std::max(src.b(), dest.b()); | ||||
|                         result.a() = std::max(src.a(), dest.a()); | ||||
|                         break; | ||||
| 
 | ||||
|                     default: | ||||
|                         LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", equation); | ||||
|                         UNIMPLEMENTED(); | ||||
|                     } | ||||
| 
 | ||||
|                     return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255), | ||||
|                                     MathUtil::Clamp(result.g(), 0, 255), | ||||
|                                     MathUtil::Clamp(result.b(), 0, 255), | ||||
|                                     MathUtil::Clamp(result.a(), 0, 255)); | ||||
|                 }; | ||||
| 
 | ||||
|                 auto srcfactor = Math::MakeVec(LookupFactorRGB(params.factor_source_rgb), | ||||
|                                                LookupFactorA(params.factor_source_a)); | ||||
|                 auto dstfactor = Math::MakeVec(LookupFactorRGB(params.factor_dest_rgb), | ||||
|                                                LookupFactorA(params.factor_dest_a)); | ||||
| 
 | ||||
|                 auto src_result = (combiner_output * srcfactor).Cast<int>(); | ||||
|                 auto dst_result = (dest * dstfactor).Cast<int>(); | ||||
| 
 | ||||
|                 switch (params.blend_equation_rgb) { | ||||
|                 case params.Add: | ||||
|                 { | ||||
|                     auto result = (src_result + dst_result) / 255; | ||||
|                     result.r() = std::min(255, result.r()); | ||||
|                     result.g() = std::min(255, result.g()); | ||||
|                     result.b() = std::min(255, result.b()); | ||||
|                     combiner_output = result.Cast<u8>(); | ||||
|                     break; | ||||
|                 } | ||||
|                  | ||||
|                 case params.Subtract: | ||||
|                 { | ||||
|                     auto result = (src_result - dst_result) / 255; | ||||
|                     result.r() = std::max(0, result.r()); | ||||
|                     result.g() = std::max(0, result.g()); | ||||
|                     result.b() = std::max(0, result.b()); | ||||
|                     combiner_output = result.Cast<u8>(); | ||||
|                     break; | ||||
|                 } | ||||
|                  | ||||
|                 case params.ReverseSubtract: | ||||
|                 { | ||||
|                     auto result = (dst_result - src_result) / 255; | ||||
|                     result.r() = std::max(0, result.r()); | ||||
|                     result.g() = std::max(0, result.g()); | ||||
|                     result.b() = std::max(0, result.b()); | ||||
|                     combiner_output = result.Cast<u8>(); | ||||
|                     break; | ||||
|                 } | ||||
|                  | ||||
|                 case params.Min: | ||||
|                 { | ||||
|                     // TODO: GL spec says to do it without the factors, but is this what the 3DS does?
 | ||||
|                     Math::Vec4<int> result; | ||||
|                     result.r() = std::min(combiner_output.r(),dest.r()); | ||||
|                     result.g() = std::min(combiner_output.g(),dest.g()); | ||||
|                     result.b() = std::min(combiner_output.b(),dest.b()); | ||||
|                     combiner_output = result.Cast<u8>(); | ||||
|                     break; | ||||
|                 } | ||||
|                  | ||||
|                 case params.Max: | ||||
|                 { | ||||
|                     // TODO: GL spec says to do it without the factors, but is this what the 3DS does?
 | ||||
|                     Math::Vec4<int> result; | ||||
|                     result.r() = std::max(combiner_output.r(),dest.r()); | ||||
|                     result.g() = std::max(combiner_output.g(),dest.g()); | ||||
|                     result.b() = std::max(combiner_output.b(),dest.b()); | ||||
|                     combiner_output = result.Cast<u8>(); | ||||
|                     break; | ||||
|                 } | ||||
| 
 | ||||
|                 default: | ||||
|                     LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", params.blend_equation_rgb.Value()); | ||||
|                     exit(0); | ||||
|                 } | ||||
|                 blend_output     = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb); | ||||
|                 blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a(); | ||||
|             } else { | ||||
|                 LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op); | ||||
|                 exit(0); | ||||
|                 UNIMPLEMENTED(); | ||||
|             } | ||||
| 
 | ||||
|             const Math::Vec4<u8> result = { | ||||
|                 registers.output_merger.red_enable   ? combiner_output.r() : dest.r(), | ||||
|                 registers.output_merger.green_enable ? combiner_output.g() : dest.g(), | ||||
|                 registers.output_merger.blue_enable  ? combiner_output.b() : dest.b(), | ||||
|                 registers.output_merger.alpha_enable ? combiner_output.a() : dest.a() | ||||
|                 registers.output_merger.red_enable   ? blend_output.r() : dest.r(), | ||||
|                 registers.output_merger.green_enable ? blend_output.g() : dest.g(), | ||||
|                 registers.output_merger.blue_enable  ? blend_output.b() : dest.b(), | ||||
|                 registers.output_merger.alpha_enable ? blend_output.a() : dest.a() | ||||
|             }; | ||||
| 
 | ||||
|             DrawPixel(x >> 4, y >> 4, result); | ||||
| @ -694,6 +760,12 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| void ProcessTriangle(const VertexShader::OutputVertex& v0, | ||||
|                      const VertexShader::OutputVertex& v1, | ||||
|                      const VertexShader::OutputVertex& v2) { | ||||
|     ProcessTriangleInternal(v0, v1, v2); | ||||
| } | ||||
| 
 | ||||
| } // namespace Rasterizer
 | ||||
| 
 | ||||
| } // namespace Pica
 | ||||
|  | ||||
| @ -85,8 +85,11 @@ struct VertexShaderState { | ||||
|     }; | ||||
| 
 | ||||
|     struct CallStackElement { | ||||
|         u32 final_address; | ||||
|         u32 return_address; | ||||
|         u32 final_address;  // Address upon which we jump to return_address
 | ||||
|         u32 return_address; // Where to jump when leaving scope
 | ||||
|         u8 repeat_counter;  // How often to repeat until this call stack element is removed
 | ||||
|         u8 loop_increment;  // Which value to add to the loop counter after an iteration
 | ||||
|                             // TODO: Should this be a signed value? Does it even matter?
 | ||||
|     }; | ||||
| 
 | ||||
|     // TODO: Is there a maximal size for this?
 | ||||
| @ -105,9 +108,14 @@ static void ProcessShaderCode(VertexShaderState& state) { | ||||
| 
 | ||||
|     while (true) { | ||||
|         if (!state.call_stack.empty()) { | ||||
|             if (state.program_counter - shader_memory.data() == state.call_stack.top().final_address) { | ||||
|                 state.program_counter = &shader_memory[state.call_stack.top().return_address]; | ||||
|             auto& top = state.call_stack.top(); | ||||
|             if (state.program_counter - shader_memory.data() == top.final_address) { | ||||
|                 state.address_registers[2] += top.loop_increment; | ||||
| 
 | ||||
|                 if (top.repeat_counter-- == 0) { | ||||
|                     state.program_counter = &shader_memory[top.return_address]; | ||||
|                     state.call_stack.pop(); | ||||
|                 } | ||||
| 
 | ||||
|                 // TODO: Is "trying again" accurate to hardware?
 | ||||
|                 continue; | ||||
| @ -118,9 +126,10 @@ static void ProcessShaderCode(VertexShaderState& state) { | ||||
|         const Instruction& instr = *(const Instruction*)state.program_counter; | ||||
|         const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id]; | ||||
| 
 | ||||
|         auto call = [&](VertexShaderState& state, u32 offset, u32 num_instructions, u32 return_offset) { | ||||
|         static auto call = [](VertexShaderState& state, u32 offset, u32 num_instructions, | ||||
|                               u32 return_offset, u8 repeat_count, u8 loop_increment) { | ||||
|             state.program_counter = &shader_memory[offset] - 1; // -1 to make sure when incrementing the PC we end up at the correct offset
 | ||||
|             state.call_stack.push({ offset + num_instructions, return_offset }); | ||||
|             state.call_stack.push({ offset + num_instructions, return_offset, repeat_count, loop_increment }); | ||||
|         }; | ||||
|         u32 binary_offset = state.program_counter - shader_memory.data(); | ||||
| 
 | ||||
| @ -457,7 +466,7 @@ static void ProcessShaderCode(VertexShaderState& state) { | ||||
|                 call(state, | ||||
|                      instr.flow_control.dest_offset, | ||||
|                      instr.flow_control.num_instructions, | ||||
|                      binary_offset + 1); | ||||
|                      binary_offset + 1, 0, 0); | ||||
|                 break; | ||||
| 
 | ||||
|             case Instruction::OpCode::CALLU: | ||||
| @ -465,7 +474,7 @@ static void ProcessShaderCode(VertexShaderState& state) { | ||||
|                     call(state, | ||||
|                         instr.flow_control.dest_offset, | ||||
|                         instr.flow_control.num_instructions, | ||||
|                         binary_offset + 1); | ||||
|                         binary_offset + 1, 0, 0); | ||||
|                 } | ||||
|                 break; | ||||
| 
 | ||||
| @ -474,7 +483,7 @@ static void ProcessShaderCode(VertexShaderState& state) { | ||||
|                     call(state, | ||||
|                         instr.flow_control.dest_offset, | ||||
|                         instr.flow_control.num_instructions, | ||||
|                         binary_offset + 1); | ||||
|                         binary_offset + 1, 0, 0); | ||||
|                 } | ||||
|                 break; | ||||
| 
 | ||||
| @ -486,12 +495,12 @@ static void ProcessShaderCode(VertexShaderState& state) { | ||||
|                     call(state, | ||||
|                          binary_offset + 1, | ||||
|                          instr.flow_control.dest_offset - binary_offset - 1, | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions); | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); | ||||
|                 } else { | ||||
|                     call(state, | ||||
|                          instr.flow_control.dest_offset, | ||||
|                          instr.flow_control.num_instructions, | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions); | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); | ||||
|                 } | ||||
| 
 | ||||
|                 break; | ||||
| @ -504,17 +513,30 @@ static void ProcessShaderCode(VertexShaderState& state) { | ||||
|                     call(state, | ||||
|                          binary_offset + 1, | ||||
|                          instr.flow_control.dest_offset - binary_offset - 1, | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions); | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); | ||||
|                 } else { | ||||
|                     call(state, | ||||
|                          instr.flow_control.dest_offset, | ||||
|                          instr.flow_control.num_instructions, | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions); | ||||
|                          instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); | ||||
|                 } | ||||
| 
 | ||||
|                 break; | ||||
|             } | ||||
| 
 | ||||
|             case Instruction::OpCode::LOOP: | ||||
|             { | ||||
|                 state.address_registers[2] = shader_uniforms.i[instr.flow_control.int_uniform_id].y; | ||||
| 
 | ||||
|                 call(state, | ||||
|                      binary_offset + 1, | ||||
|                      instr.flow_control.dest_offset - binary_offset + 1, | ||||
|                      instr.flow_control.dest_offset + 1, | ||||
|                      shader_uniforms.i[instr.flow_control.int_uniform_id].x, | ||||
|                      shader_uniforms.i[instr.flow_control.int_uniform_id].z); | ||||
|                 break; | ||||
|             } | ||||
| 
 | ||||
|             default: | ||||
|                 LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x", | ||||
|                           (int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex); | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user
	 bunnei
						bunnei